
M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 23 | P a g e

Atomic algorithm and the servers' s use to find the Hamiltonian

cycles

M. Sghiar

UFR de Mathématique et d'Informatique | 7, rue René Descartes - 67084 Strasbourg Cedex France

ABSTRACT:

Inspired by the movement of the particles in the atom, I demonstrated in [5] the existence of a polynomial

algorithm of the order
O(n3)

 for finding Hamiltonian cycles in a graph with basis
E= {x0,... , xn− 1 }

. In this

article I will give an improvement in space and in time of the algorithm says: we know that there exist several

methods to find the Hamiltonian cycles such as the Monte Carlo method, Dynamic programming, or DNA

computing. Unfortunately they are either expensive or slow to execute it. Hence the idea to use multiple servers

to solve this problem : Each point
x i in the graph will be considered as a server, and each server

x i will

communicate with each other server
x j with which it is connected . And finally the server

x0 will receive

and display the Hamiltonian cycles if they exist.

Keywords : Graph, Hamilton cycles, P=NP

I. Introduction
It is known both theoretically and computationally so difficult to find a Hamilton cycles(paths) in simple

graphs, and that this problem is a classical NP Complete problem. ([1], [2], [3] and [4]).

Inspired by the movement of the particles in the atom, I demonstrated in [5] the existence of a polynomial

algorithm of the order
O(n3)

 for finding Hamiltonian cycles in a graph. In this article I will give an

improvement in space and in time of the algorithm says:

we know that there exist several methods to find the Hamiltonian cycles like the Monte Carlo method, Dynamic

programming, or DNA computing. Unfortunately they are either expensive or slow to execute it. Hence the idea

to use multiple servers to solve this problem.

The first code is faster but consumes more memory, while the second, although slower, but uses less memory

since it uses writing to files during the search of Hamilton cycles.

These two algorithms inspired the idea of the servers' use.

The First code :

from scipy import *

import numpy as np

import random

import time

start = time.time()

The Feynman code in Python:

Written by sghiar 24 may, 2016 was 21:25 p.m..

This code allows you to find the Hamilton cycle if it exists.

RESEARCH ARTICLE OPEN ACCESS

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 24 | P a g e

Skip Code

We define the function F Feynman.

def F(j, T):

 l= len(T)

 U=[l+1]

 U=[0]*(l+1)

 U[0]=T[0]-1

 for i in range(1,l):

 U[i+1]=T[i]

 U[1]=j

 return U

We define the function R.

def R(T):

 l= len(T)

 U=[]

 for i in range(l-1):

 U.append(T[i+1])

 return U

We define the distance function in a Hamiltonian cycle.

def D(T):

 D=0.0

 l= len(T)

 for i in range(0,l-1):

 D=D+(G[T[i]][T[i+1]])

 return D

We construct the graph G :

print ("number of cities=")

n=input()

G=np.eye(n,n) #

for i in range(n):

 for j in range(n):

 G[i][j]=1

 #G[i][j]=input()

 #print "G[",i,"][",j,"]"

 #G[i][j]=input()

 #if i<=j :

 #G[i][j]=random.randint(0,1)

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 25 | P a g e

 #else: G[i][j]=G[j][i]

 #print "G[",i,"][",j,"]=",G[i][j]

 d={}

d[0]=[[n,0]]

for j in range(n):

 if G[0][j]!=0 and 0!=j :

 d[j]=[[n-1,j,0]]

 d[0]=[]

 #print d[j]

 else :

 d[j]=[[0,j]]

 #print d[j]

L=[]

H=[]

for k in range(0,n**2) :

 if len(H) != 0 :

 print H

 print("Time:", time.time() - start)

 break

 print(k, "Time:", time.time() - start)

 print "The program is looking for the Hamiltonian cycles..."

 if k%n==0:

 for T in d[k%n] :

 if T[0] == 0 :

 H.append(T)

 else:

 pass

 del d[0]

 d[0]=[]

 elif k%n!=0:

 for T in d[k%n] :

 for j in range(0,n):

 if T[0]<=0 or (j in R(T) and j!=0):

 pass

 else :

 if G[k%n][j]!=0 and (k%n)!=j :

 d[j]+=[F(j,T)]

 else:

 pass

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 26 | P a g e

 del d[k%n]

 d[k%n]=[]

#Hamiltonians Cycles :

if len(H)!=0:

 for elt in H:

 print ("There exist the Hamiltonian cycles")

 print(R(elt) ," Is one Hamiltonian cycle, Its distance is :" , D(elt))

else :

 print("No Hamiltonian cycles ")

End of code

The second code :

And if we want to use less memory ram , we can use this algorithm:

/usr/bin/env python

#coding=utf-8

import decimal

from scipy import *

import numpy as np

import random

import time

start = time.time()

import os

The Feynman code in Python:

Written by sghiar 28 may, 2016 may 14:53 p.m..

This code allows you to find the Hamiltonian cycle if it exists.

Skip Code

We define the function F Feynman.

def R(T):

 l= len(T)

 U=[]

 for i in range(l-1):

 U.append(T[i+1])

 return U

def F(j, T):

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 27 | P a g e

 l= len(T)

 U=[l+1]

 U=[0]*(l+1)

 U[0]=T[0]-1

 for i in range(1,l):

 U[i+1]=T[i]

 U[1]=j

 return U

 # We define the distance function in a Hamilton cycle.

def D(T):

 D=0.0

 l= len(T)

 for i in range(0,l-1):

 D=D+(G[T[i]][T[i+1]])

 return D

We construct the graph G :

print ("number of cities=")

n=input()

G=np.eye(n,n) #

for i in range(n):

 for j in range(n):

 G[i][j]=1

 #G[i][j]=input()

 #print "G[",i,"][",j,"]"

 #G[i][j]=input()

 #if i<=j :

 #G[i][j]=random.randint(0,1)

 #else: G[i][j]=G[j][i]

 #print "G[",i,"][",j,"]=",G[i][j]

 d={}

f={}

for i in range(n):

 f[i]= file("fichier_%d.txt"%i, "w")

f[0].write(str([n,0])+"\n")

for j in range(1,n):

 if G[0][j]!=0 and 0!=j :

 f[j]= file("fichier_%d.txt"%j, "a")

 f[j].write(str([n-1,j,0])+"\n")

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 28 | P a g e

 else :

 f[j].write(str([0,j])+"\n")

L=[]

H=[]

for k in range(0,n**2) :

 if len(H) != 0 :

 print H

 print("Time:", time.time() - start)

 break

 else:

 print(k, "Time:", time.time() - start)

 print "The program is looking for the Hamiltonian cycles..."

 if k%n==0:

 #f[k%n]= file("fichier_%d.txt"%(k%n), "r")

 f[k%n]= open("fichier_%d.txt"%(k%n), "r")

 for T in f[k%n] :

 exec('T='+T)

 x=T

 if x[0] == 0 :

 H.append(R(F(j,T)))

 break

 else:

 pass

 f[0].close()

 del f[0]

 f[0]= file("fichier_%d.txt"%(k%n), "a")

 #os.remove("fichier_0.txt")

 elif k%n!=0:

 f[k%n]= open("fichier_%d.txt"%(k%n), "r")

 for T in f[k%n]:

 T.split('=')

 exec('T='+T)

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 29 | P a g e

 x=T

 for j in range(0,n):

 if x[0]<=0 or (j in R(x) and j!=0):

 pass

 else :

 if G[k%n][j]!=0 and (k%n)!=j :

 f[j]= file("fichier_%d.txt"%j, "a")

 f[j].write(str(F(j,x))+"\n")

 f[j].close()

 else:

 pass

 del f[k%n]

 #os.remove("fichier_%d.txt"%(k%n))

 f[k%n]= file("fichier_%d.txt"%(k%n), "a")

#Hamiltonians Cycles :

if len(H)!=0:

 for elt in H:

 print ("There exist the Hamiltonian cycles")

 print(R(elt) ," Is one Hamiltonian cycle, Its distance is :" , D(elt))

else :

 print("No Hamiltonian cycles ")

for i in range(n):

 f[i].close()

End of code

Note: The two algorithms above can be modified to use at least n servers to find the Hamiltonian cycles,

so we will win time and space (memory):

The third code :

There exist several methods to find the Hamiltonian cycles such as the Monte Carlo method, Dynamic

programming, or DNA computing. Unfortunately they are either expensive or slow to execute it. Hence the idea

to use multiple servers to solve this problem.

Each point
x i in the graph will be considered as a server, and each server

x i will send F(j,T) -T is in d[i]- to

M. Sghiar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) June 2016, pp.23-30

 www.ijera.com 30 | P a g e

each server
x j with which it is connected . And finally the server

x0 will receive and display the

Hamiltonian cycles if they exist.

Obviously the servers can work simultaneously, which speeds up the execution of the program and solves the

problem of the full memory.

References
[1] Lizhi Du. A polynomial time algorithm for Hamilton cycle. IMECS, I :17–19, March 2010. Hong

Kong.

[2] L.Lovasz. Combinatorial problems and exercises. Noth-Holland,Amsterdam, 1979.

[3] D.S.Johnson M.R.Garey. Computers and intractability : a guid to the theory of np-completeness.

Freeman,San Francisco, 1979.

[4] R.Diestel. Graph theory. Springer, New York, 2000.

[5] M. Sghiar. Algorithmes quantiques, cycles hamiltoniens et la k-coloration des graphes. Pioneer Journal

of Mathematics and Mathematical Sciences,17-Issue 1 :51–69, May 2016.

